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�
 ABSTRACT 

This study investigates the relationship between genetic ancestry, breast 
cancer subtypes, and survival outcomes among 951 locally advanced breast 
cancer cases from Argentina, Brazil, Chile, Mexico, and Uruguay, par-
ticipating in the Molecular Profile of Breast Cancer Study. Array-based 
genotyping and ADMIXTURE analysis were used for genetic ancestry 
evaluation. Breast cancer subtypes were defined by IHC and the gene 
expression–based PAM50 algorithm. The distribution of genetic ancestry, 
including European, Indigenous American (IA), African (AFR), and East 
Asian components, revealed a heterogeneous genetic admixture across 
countries, with the highest IA ancestry observed in Chile (30.9%) and 
Mexico (30.8%). Testing the relationship between genetic ancestry and 
breast cancer subtypes demonstrated that a 10% increase in European 
ancestry was significantly associated with a 14% decrease in the odds of 
developing HER2-enriched breast cancer, after adjustment by age, nodal 
status, and the AFR component (adj. P ¼ 0.021, luminal A as reference). 

Accordingly, a 10% increase in IA ancestry was associated with a 21% 
increase in the probability of having HER2-enriched breast cancer (adj. 
P ¼ 0.022). IA ancestry also significantly increased overall survival after 
adjustment by age, nodal status, and AFR ancestry, although this result is 
controversial and may be affected by the size and heterogeneity of the 
Molecular Profile Breast Cancer Study cohort. Our research confirms 
previous findings of a high prevalence of HER2-dependent breast tumors 
among Hispanic/Latina women and strengthens the hypotheses of the 
existence of either population-specific genetic variant(s) or of other 
ancestry-correlated factors that impact HER2 expression in breast cancer 
consistently across different Latin American regions. 

Significance: The evidence in this work supports the idea that factors 
linked to genetic ancestry influence the prevalence of breast cancer sub-
types in Latin America, potentially affecting treatment needs in the region. 
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Ingenieŕıa Biomédica, Universidad Nacional de Córdoba, Córdoba, Argentina. 22The 
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Introduction 
Breast cancer is the leading cause of cancer death in Latin American women 
(1). In this region, breast tumors are frequently diagnosed at stages II or 
higher, mainly because of relatively low rates of mammography screening (2, 
3) and delays in access to care for diagnostic studies (4). Breast cancer is also 
a heterogeneous disease including tumors with different responses to 
treatment and survival, and more aggressive subtypes are often associated 
with more advanced stages at diagnosis (5). Although some studies have 
shown a higher proportion of aggressive breast cancer subtypes in the region 
(6), in general, Latin American studies are not population-based and tend to 
overrepresent aggressive disease. However, registry-based studies in the 
United States have reported higher proportions of hormone receptor–negative 
(HR�) disease and HER2-positive (HER2+) disease in Hispanic/Latina 
women, suggesting that observations in Latin America might reflect a real 
difference in subtype distribution (7). An analysis conducted on patients with 
breast cancer from Peru showed an association between Indigenous American 
(IA) ancestry and HER2+ disease, which was replicated in an independent 
study including Colombian and Mexican women (8). Genetic ancestry is 
correlated with both genetic and nongenetic factors (9, 10), therefore, addi-
tional testing of the observed association, including better characterization of 
tumor heterogeneity in women from multiple regions, could give important 
insights leading to the refinement of our understanding of relevant factors. 

IHC markers (HR and HER2) are routinely tested in Latin American pa-
tients; however, data defining intrinsic molecular subtypes have been sparse. 
The Molecular Profile of Breast Cancer Study (MPBCS) of the Latin America 
Cancer Research Network (LACRN) collected molecular, clinical, and epi-
demiologic data from an observational cohort of more than 1,200 Latin 
American patients with breast cancer. Previous publications of the MPBCS 
have described the distribution of PAM50 subtypes from transcriptomic data 
and their impact on survival (11, 12), showing a worse prognosis for basal- 
like tumors [followed by HER2-enriched (HER2E) and luminal B tumors] 
than for luminal A (LumA) cases, in concordance with other advanced breast 
cancer cohorts. To test whether the degree of genetic admixture presented in 
patients of this study might correlate with breast cancer subtype distribution 
and survival, we evaluated the association between genetic ancestry, tumor 
subtype, recurrence, and survival in a sample of 951 women from public- 
health institutions in Argentina, Brazil, Chile, Mexico, and Uruguay par-
ticipating in the MPBCS. We particularly focused on the intrinsic subtypes as 
they recapitulate the actual driver pathways of breast cancer more closely 
and estimate survival more precisely than IHC-based classifications (13). 

Materials and Methods 
Study participants 
The MPBCS detailed eligibility criteria have been described previously (11). 
Briefly, women with clinical stage II or III (American Joint Committee on 
Cancer 7) breast adenocarcinoma were deemed eligible for this study. Pa-
tients with bilateral or inflammatory breast cancer or metastatic disease 
were excluded. As recruitment occurred prior to the collection of pathologic 
diagnosis samples to facilitate the acquisition of additional tissue for mo-
lecular studies, eligibility was confirmed retrospectively. Patients who were 
subsequently reassessed as stage I remained eligible for participation. The 
protocol received approval from the NCI Ethics Committee and local in-
stitutional review boards in each country. The MPBCS was registered 

at ClinicalTrials.gov (identifier: NCT02326857) and adhered to the principles 
of the Declaration of Helsinki and local regulations. Before the study pro-
cedures, all participants signed the study-specific written informed consent 
form. Participants were monitored for 5 years to track survival and recur-
rence. Electronic case report forms were utilized to capture clinical data, with 
local data managers ensuring accuracy. 

Tumor and blood samples were collected at the time of diagnosis, prior to 
the initiation of any treatment. From a total of 1,278 patients, DNAs 
extracted from blood samples from 1,001 eligible patients were successfully 
genotyped, and 951 constituted the final dataset. From those, 827 also had 
transcriptomic information available from treatment-naı̈ve tumor samples 
and constituted the dataset used for association and survival analyses. 

Demographic data 
After signing the consent form, trained study personnel applied a ques-
tionnaire containing questions about socioeconomic and demographic 
characteristics and lifestyle factors, including age, education, alcohol and 
tobacco use, access to healthcare, familial cancer, hormonal and reproductive 
history, and physical activity (14). 

Clinical data 
Clinical stages for each patient were established according to the American 
Joint Committee on Cancer staging manual seventh edition. Given that some 
patients underwent chemotherapy before surgery, the lymph node status at 
diagnosis was defined clinically as negative (i.e., no clinical evidence of in-
volved nodes) or positive (when at least one node was detected at physical 
examination). Body mass index was calculated using height and weight re-
ported in medical charts. IHC for HR [i.e., estrogen receptor (ER) and 
progesterone receptor (PR)], HER2, and Ki67 were determined locally fol-
lowing standard operating procedures (11). All local pathology departments 
were accredited by the College of American Pathologists. Patients were 
classified according to IHC subtype based on ER/PR and HER2 status. We 
used a cutoff of 1% to define ER/PR positivity. HER2 positivity was defined 
3+ staining by IHC or 2+ with positive gene amplification by FISH or 
chromogenic in situ hybridization testing. Detailed information regarding 
molecular subtype determination (PAM50 subtypes: LumA, luminal B, 
HER2E, and basal-like) by microarray-based transcriptomic assay has been 
described previously (11). Quality control measures, including principal 
component analysis, were implemented to avoid bias. Patients classified as 
normal by PAM50 were not considered in the analyses. 

Genetic ancestry estimation 
DNA was extracted from the 1,001 available whole blood samples following 
standard protocols. DNA samples were genotyped with Infinium Multi-Ethnic 
Global-8 (MEGA) array version 1.0 (Illumina WG-316-1004), comprising 
1,748,250 markers (single-nucleotide variants and insertions/deletions). Ge-
notypes were obtained in GenoType Compressor format using the Illumina 
Array Analysis Platform Genotyping version 1.1.0 GenCall program. The ge-
notypes and probes of each marker were aligned per sample against the 
hg19 reference genome with bcftools (https://samtools.github.io/bcftools/) 
and gtc2vcf (https://github.com/freeseek/gtc2vcf), obtaining a binary variant 
call format file (BCL). Quality control was performed using PLINK 1.9 
(RRID: SSR_001757; ref. 15). All variants that were not present in at least 10% 
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TABLE 1 By-country epidemiologic and clinical characteristics of the 951 patients of the LACRN-MPBCS included in this study 

Parameter Total 

Country 

Argentina Brazil Chile Mexico Uruguay 
Univariate 
analysisa 

Number of patients included 
in this study 

951 207 207 140 321 76 

Demographic/anthropometric 
Age at diagnosis–mean 

(SD) 
951 55.6 (12.0) 52.5 (11.5) 56.2 (12.7) 52.1 (12.2) 58.4 (12.3) P < 0.001b 

Years of education–n (%) P = 0.016 V = 0.13 
Up to 8 years 357 88 (42.5) 90 (43.5) 45 (32.1) 101 (31.5) 33 (43.4) 
9 years or + 338 81 (39.1) 73 (35.3) 70 (50.0) 97 (30.2) 17 (22.4) 
Unknown/missing 256 38 (18.3) 44 (21.2) 25 (17.8) 123 (38.3) 26 (34.2) 

BMI–n (%) P ¼ 0.532 V ¼ 0.06 
<25.0 kg/m2 231 57 (27.5) 56 (27.0) 32 (22.8) 64 (19.9) 22 (28.9) 
25.0–29.99 kg/m2 294 65 (31.4) 72 (34.8) 49 (35.0) 94 (29.3) 14 (18.4) 
>30.0 kg/m2 294 62 (29.9) 71 (34.3) 52 (37.1) 87 (27.1) 22 (28.9) 
Unknown/missing 132 23 (11.1) 8 (3.86) 7 (5.00) 76 (23.7) 18 (23.7) 

Ancestry–median (IQR) 
EUR 951 72.2 (59.2–87.4) 79.9 (63.5–90.7) 65.0 (62.1–68.4) 58.5 (52.6–66.5) 83.9 (76.0–91.0) P < 0.001b 

IA 951 22.9 (9.7–33.6) 5.3 (2.9–8.4) 30.9 (28.4–33.1) 30.8 (24.8–36.6) 10.4 (6.2–17.0) P < 0.001b 

AFR 951 1.2 (0.001–3.3) 11.9 (2.9–25.2) 0.1 (0.001–1.5) 3.8 (2.3–5.6) 3.2 (0.7–6.3) P < 0.001b 

EAS 951 2.8 (1.1–4.0) 0.03 (0.001–0.9) 3.2 (2.3–4.1) 5.6 (4.2–6.9) 1.0 (0.001–2.4) P < 0.001b 

Clinical 
Clinical stage–n (%) P < 0.001 V = 0.19 

Early (IIA–IIB) 347 92 (44.4) 89 (42.9) 41 (29.3) 84 (26.2) 41 (53.9) 
Locally advanced 

(IIIA–IIIB) 
583 114 (55.1) 117 (56.5) 98 (70.0) 223 (69.5) 31 (40.8) 

Missing/other 21 1 (0.5) 1 (0.6) 1 (0.7) 14 (4.3) 4 (5.3) 
Lymph node status–n (%) P < 0.001 V = 0.22 

Negative 406 115 (55.5) 103 (49.7) 44 (31.4) 102 (31.8) 42 (55.3) 
Positive 526 92 (44.4) 103 (49.7) 95 (67.8) 206 (64.2) 30 (39.5) 
Missing 19 — 1 (0.6) 1 (0.8) 13 (4.0) 4 (5.2) 

HER2 status–n (%) P < 0.001 V = 0.12 
Negative 730 171 (82.6) 153 (73.9) 107 (76.4) 236 (73.5) 63 (82.9) 
Positive 189 36 (17.4) 52 (25.1) 23 (16.4) 69 (21.5) 9 (11.8) 
Missing/equivocal 32 — 2 (0.97) 10 (7.14) 16 (4.98) 4 (5.26) 

IHC subtype–n (%) P < 0.001 V = 0.11 
HR(+) HER2(�) 568 134 (64.7) 122 (58.9) 85 (60.7) 175 (54.5) 52 (68.4) 
HR(+) HER2(+) 108 19 (9.2) 36 (17.4) 13 (9.3) 35 (10.9) 5 (6.6) 
HR(�) HER2(+) 81 17 (8.2) 16 (7.7) 10 (7.1) 34 (10.6) 4 (5.3) 
HR(�) HER2(�) 154 37 (17.9) 31 (15.0) 21 (15.0) 57 (17.8) 8 (10.5) 
Missing 40 — 2 (1.0) 11 (7.9) 20 (6.2) 7 (9.2) 

PAM50 subtype–n (%) P = 0.007 V = 0.10 
LumA 376 104 (50.2) 76 (36.7) 54 (38.6) 101 (31.5) 41 (53.9) 
LumB 189 32 (15.5) 44 (21.3) 37 (26.4) 55 (17.1) 21 (27.6) 
HER2E 112 20 (9.7) 24 (11.6) 17 (12.1) 44 (13.7) 7 (9.2) 
Basal-like 150 35 (16.9) 28 (13.5) 23 (16.4) 59 (18.4) 5 (6.7) 
Normal 46 16 (7.7) 6 (2.9) 6 (4.3) 16 (5.0) 2 (2.6) 
Missing 78 — 29 (14.0) 3 (2.3) 46 (14.3) — 

(Continued on the following page) 
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of the samples were removed. Variants were filtered by a Hardy–Weinberg 
equilibrium test, discarding 9,248 variants with a P value lower than 1E-7. Fifty 
samples with a genotyping call rate of less than 90% were eliminated. From the 
remaining samples, 391,714 monomorphic variants were eliminated using a 
minor frequency allele filter >0 (0%). After filtering by 1% minor frequency 
allele, 873,197 variants were available in the final set of 951 samples. 

The following two genome datasets were used to generate the IA ancestry 
reference group: (i) 17 genomes of Patagonian origin (3 from Laitec Island of 
putative Chono ancestry, 4 Kaweskar, 3 Huilliche, 3 Pehuenche, and 
4 Yamana) and (ii) 21 unrelated individuals of IA origin from Mexico, Brazil, 
Argentina, Peru, and Colombia [from the Simons Genome Diversity Project 
(16)], including 1 Chane, 3 Karitiana, 2 Surui, 2 Piapoco, 2 Mayan, 2 Mixe, 
2 Mixtec, 2 Pima, 2 Zapotec, and 3 Quechua. All individuals used as IA 
reference showed >90% IA ancestry in a previous ADMIXTURE analysis 
(see below). As we had a limited number (n ¼ 38) of IA reference genomes, 
we decided to match as closely as possible the number of reference indi-
viduals in the other ancestries to have a similar level of information for each 
ancestry. Thus, 40 representative samples from Southeast Asia (40 Han 
Chinese, Europe (20 Iberian and 20 Northern Europeans from Utah), and 
Africa (40 Yoruba) were randomly selected among the 1000 Genomes phase 
three individuals with >90% specific ancestry (17). All three sets were con-
verted to PLINK format independently. Hardy–Weinberg equilibrium fil-
tering discarded those variants with a P value lower than 1E-7 in the three 
sets. Triallelic variants were also removed. 

A set of reference samples plus those from the MPBCS were created with the 
intersection of 165,820 variants. After filtering by linkage disequilibrium 
with PLINK 1.9 (window size 50, number of variants 5, and variance in-
flation factor threshold 1.2), 41,054 variants were available. 

Genetic ancestry estimation, defined as the estimated genetic similarity to 
reference populations, was performed using the unsupervised ADMIXTURE 
version 1.23 program (RRID: SCR_001263; ref. 18) with four populations to 
capture IA, European (EUR), African (AFR), and East Asian (EAS) ancestry 
based on the known major continental influences to the population of Latin 
America. As a result, individual fractions of the EUR, IA, AFR, and EAS 
ancestral components were obtained for the 951 samples. To visualize the 

ancestral structure of the MPBCS participants we conducted principal 
component analysis using the program PLINK 1.9. 

Statistical analyses 
To evaluate the significance of differences in the distribution of variables among 
countries, χ2 tests (stats, RRID: SCR_025968) were used for categorical variables 
with Cramer’s V [rcompanion R package (19)] as a measure of the strength of 
association. Age was tested as a continuous variable using a Kruskal–Wallis test 
(stats, RRID: SCR_025968). The univariate association between EUR ancestry 
and breast cancer subtype was tested using a Kruskal–Wallis test with a post hoc 
Dunn test and Benjamini–Hochberg P value correction. 

Multinomial logistic regression models were applied to study the association 
of the scaled EUR ancestry (i.e., 1 unit difference in the ancestry coefficient is 
equivalent to a change in 10% of the ancestry component) with breast cancer 
subtypes [HER2 status (negative or positive), IHC-based subtypes, or 
PAM50 subtypes] using the nnet R package (20). HER2�, HR+ HER2�, and 
LumA patients were defined as reference groups for each model, respectively. 
For studying the association between ancestry and survival, Cox pro-
portional hazard regression models with the survival R package were 
performed considering ancestry as a continuous scaled variable (1 U 
equivalent to a change in 10% of the ancestry component). To select the 
most important potential confounders in the logistic and Cox models, 
we analyzed previous evidence in the literature and our own univariate 
and collinearity analysis (see Extended Figs. E1, E2, and E3 in Supple-
mentary Information for a detailed analysis). Clinical nodal and tumor 
statuses were strongly correlated with clinical stage (coefficients of 
0.78 and 0.57, respectively, Extended Fig. E3 in Supplementary Infor-
mation), as they are parameters used to calculate clinical stage. For this 
reason, we chose clinical lymph nodal status (i.e., negative vs. positive) 
as the simplest and more complete (i.e., more subjects had this variable 
with data) confounder representative of stage. We also selected age at 
diagnosis as a continuous variable (correlation coefficients of 0.11 with 
EUR ancestry and �0.09 with IA ancestry), and AFR ancestry (coeffi-
cients of �0.35 with EUR ancestry and �0.01 with IA ancestry) and 
country (coefficients of 0.21 with EUR ancestry and 0.48 with IA 

TABLE 1 By-country epidemiologic and clinical characteristics of the 951 patients of the LACRN-MPBCS included in this study (Cont’d) 

Parameter Total 

Country 

Argentina Brazil Chile Mexico Uruguay 
Univariate 
analysisa 

5-year survival–n (%) P = 0.015 V = 0.10 
Alive 748 166 (80.2) 157 (75.8) 112 (80.0) 254 (79.1) 59 (77.6) 
Dead 152 33 (15.9) 42 (20.3) 26 (18.6) 39 (12.1) 12 (15.8) 
Unknown/missing 51 8 (3.9) 8 (3.9) 2 (1.4) 28 (8.8) 5 (6.6) 

Abbreviations: AFR, African; BMI, body mass index; EAS, East Asian; EUR, European; HER2E, HER2-enriched; IA, Indigenous American; IHC, 
immunohistochemical; IQR, inter-quartile range; LumA, luminal A; LumB, luminal B. 
Percentages (%) are defined as the proportion of individuals of a country that showed the variable level respect to the total individuals of such country (columns). 
aχ2 P value and Cramer’s V for categorical variables. Bold numbers highlight significant associations between the variable distribution and the country. A 
Cramer’s V value of 0.20 or less indicates a weak association, between 0.20 and 0.30 a moderate association, and higher than 0.30 a strong association. 

bKruskal–Wallis test for non-normally distributed continuous variables. 
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ancestry) were included as potential confounders (Extended Fig. E3 in 
Supplementary Information). 

All analyses were performed in R version 4.2.2. P values ≤ 0.050 were 
considered significant. 

Data availability 
The processed data and scripts used for this study are available at https:// 
github.com/danielaalvesdq/LACRN-MPBCS. Raw genotyping array data 
generated in this study are currently protected by data policies of the 
LAGENO-BC and Confluence Consortia and will be available from the 
corresponding author in the future upon reasonable request. 

Results 
The distribution of relevant clinical and epidemiologic data of this hospital- 
based cohort is summarized in Table 1 and reflects the previously published 
description of larger versions of the cohort (11, 14). In this dataset of 
951 patients, heterogeneity between countries was evident for age at diag-
nosis, education level, genetic ancestry, lymph node status, IHC-based and 

PAM50 subtypes, and survival but not for body mass index (Table 1). 
According to the Cramer’s V, the magnitude of the association between 
variables and country was weak (Cramer’s V ≤ 0.20). 

Genetic ancestry distribution in the LACRN-MPBCS 
The distribution of the ancestry components of this multicountry cohort 
showed important differences between individuals and countries (Fig. 1A– 
D). Study sites in Argentina, Uruguay, and Brazil showed the highest me-
dians for EUR ancestry (72.2%, 83.9%, and 79.9%, respectively), whereas 
those in Chile and Mexico have the lowest EUR medians (65.0% and 58.5%, 
respectively). The AFR component is well-represented in Brazil (a median of 
11.9%) and to a lesser extent in Mexico (3.8%) and Uruguay (3.2%), whereas 
it is minimal in Argentina and Chile. The IA median proportion was lowest 
(5.3%) in Brazil and highest in Chile and Mexico (30.9% and 30.8%, re-
spectively; Table 1; Fig. 1D). A complementarity between the EUR and IA 
ancestries was evident for most individuals of the cohort (Fig. 1A), with the 
exception of Brazil in which the AFR component was most relevant 
(i.e., higher than 15% of the ancestry) in 40% (83/207) of patients. The EAS 
component was relatively low; only seven individuals were with more than 
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95% EAS ancestry, corresponding to patients identified as members of the 
Asian immigrant communities within each country. 

At the whole-cohort level, the EUR (median of 66.1%) and IA (median of 
24.2%) components were the most represented, followed by AFR (2.9%) 
and EAS (3.1%; Fig. 1A and C). When differences in the EUR median 
proportion among countries were tested, all intercountry comparisons 
were statistically significantly different (P < 0.050) except for Argentina 
versus Brazil and Uruguay versus Brazil, in which no differences in the 
representation of EUR ancestry were observed (P ¼ 0.701 and P ¼ 1.000, 
respectively). We also identified a difference in the EUR and IA ancestry 
variances between countries (Table 1; Fig. 1D). IQRs for Argentina (59.2– 
87.4), Brazil (63.5–90.7), and Uruguay (76.0–91.0) showed a larger vari-
ance in EUR coefficients than that of Chile (IQR ¼ 62.1–68.4) and Mexico 
(IQR ¼ 52.6–66.5). A similar, complementary picture was seen for the IA 
component (Table 1). 

To estimate biases in ancestry representation among institutions, we ex-
plored differences in genetic ancestry estimates between institutions within 
countries (Supplementary Fig. S1). For most countries, no significant 

differences were observed except for Brazil (P ¼ 0.003 for EUR, P < 0.001 for 
AFR, and P > 0.050 for IA and EAS components). 

Association between breast cancer subtypes and 
genetic ancestry 
To study whether there was any association between ancestry and tumor 
subtypes, the median proportion of the different genetic ancestry compo-
nents was compared among breast cancer subtypes defined both by IHC and 
PAM50. An analysis of differences of medians showed that EUR and IA 
proportions (but not AFR and EAS) were significantly different among 
PAM50 subtypes (Fig. 2). In the case of EUR ancestry, we could further 
demonstrate that the statistical signification was driven by the LumA– 
HER2E contrast and explained by the lower EUR ancestry associated with 
the HER2E subtype (LumA vs. HER2E adjusted P ¼ 0.038 for EUR ancestry, 
Fig. 2). We could not see statistically significant differences in ancestry 
distribution for IHC-based subtypes (Supplementary Fig. S2). 

Given the heterogeneity of the distribution of IA and AFR ancestries among 
countries, the limited number of patients, and the strong correlation between 
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FIGURE 2 Distribution of PAM50 breast cancer subtypes according to the four most prevalent ancestral components in Latin America: European 
(EUR), Indigenous American (IA), African (AFR), and East Asian (EAS). Bars shown correspond to post hoc Dunn test pairwise comparisons <0.05. 
HER2E, HER2-enriched; LumA, luminal A; LumB, luminal B. 
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TABLE 2 Association between HER2 status, IHC and PAM50 subtypes, and EUR genetic ancestry (for every 10% increase in EUR or IA ancestry 
component) 

EUR ancestry IA ancestry 

Subtype n OR (CI) P value OR (CI) P value 

By HER status 
Univariate HER2� 919a Ref Ref 

HER2+ 0.94 (0.86–1.03) 0.190 1.02 (0.91–1.14) 0.720 
Nodal status HER2� 903 Ref Ref 

HER2+ 0.95 (0.87–1.04) 0.250 1.00 (0.89–1.12) 0.954 
Nodal status + age at Dx HER2� 903 Ref Ref 

HER2+ 0.96 (0.87–1.05) 0.334 0.99 (0.88–1.12) 0.928 
Nodal status + age at Dx + AFR ancestry HER2� 903 Ref Ref 

HER2+ 0.97 (0.88–1.07) 0.535 1.01 (0.90–1.14) 0.814 
Nodal status + age at Dx + AFR ancestry + country HER2� 903 Ref Ref 

HER2+ 0.94 (0.84–1.06) 0.331 1.08 (0.91–1.27) 0.377 
By IHC subtypes 

Univariate HR+/HER2� 911 b Ref Ref 
HR+/HER2+ 0.98 (0.88–1.10) 0.755 0.98 (0.85–1.13) 0.759 
HR�/HER2+ 0.89 (0.78–0.99) 0.040 1.14 (0.97–1.34) 0.109 
HR�/HER2� 0.95 (0.86–1.05) 0.308 1.12 (0.99–1.27) 0.071 

Nodal status HR+/HER2� 895 Ref Ref 
HR+/HER2+ 0.99 (0.88–1.12) 0.906 0.95 (0.82–1.11) 0.554 
HR�/HER2+ 0.88 (0.78–1.00) 0.059 1.11 (0.94–1.31) 0.205 
HR�/HER2� 0.97 (0.87–1.07) 0.556 1.08 (0.95–1.23) 0.226 

Nodal status + age at Dx HR+/HER2� 895 Ref Ref 
HR+/HER2+ 1.01 (0.88–1.13) 0.844 0.94 (0.81–1.09) 0.406 
HR�/HER2+ 0.87 (0.78–1.01) 0.065 1.11 (0.94–1.31) 0.217 
HR�/HER2� 0.98 (0.88–1.09) 0.716 1.07 (0.94–1.21) 0.307 

Nodal status + age at Dx + AFR ancestry HR+/HER2� 895 Ref Ref 
HR+/HER2+ 0.99 (0.88–1.12) 0.906 0.95 (0.81–1.11) 0.550 
HR�/HER2+ 0.88 (0.78–1.00) 0.059 1.14 (0.96–1.36) 0.143 
HR�/HER2� 0.97 (0.87–1.07) 0.556 1.07 (0.94–1.23) 0.287 

Nodal status + age at Dx + AFR ancestry + country HR+/HER2� 895 Ref Ref 
HR+/HER2+ 0.97 (0.84–1.13) 0.763 1.08 (0.87–1.34) 0.505 
HR�/HER2+ 0.91 (0.77–1.06) 0.226 1.12 (0.89–1.41) 0.330 
HR�/HER2� 0.99 (0.87–1.14) 0.937 1.10 (0.92–1.31) 0.303 

By PAM50 
Univariate LumA 827 c Ref Ref 

LumB 0.97 (0.88–1.07) 0.572 1.01 (0.89–1.14) 0.848 
HER2E 0.86 (0.77–0.97) 0.011 1.16 (1.00–1.35) 0.044 
Basal 0.90 (0.81–0.99) 0.047 1.17 (1.02–1.33) 0.021 

Nodal status LumA 810 
LumB 0.97 (0.88–1.08) 0.629 1.01 (0.89–1.15) 0.871 
HER2E 0.86 (0.76–0.96) 0.009 1.16 (1.00–1.36) 0.050 
Basal 0.92 (0.82–1.02) 0.120 1.13 (0.98–1.29) 0.095 

Nodal status + age at Dx LumA 810 
LumB 0.97 (0.88–1.08) 0.631 1.01 (0.89–1.15) 0.875 
HER2E 0.86 (0.76–0.97) 0.011 1.16 (0.99–1.35) 0.056 
Basal 0.93 (0.83–1.04) 0.182 1.11 (0.97–1.28) 0.130 

(Continued on the following page) 
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EUR and IA coefficients (�0.78, see Extended Fig. E3 in Supplementary 
Information), we first decided to perform subsequent analyses using the EUR 
ancestry proportion as a proxy of admixture. To evaluate whether there was 
an association between EUR ancestry and HER2 status, IHC or 
PAM50 subtypes in the context of a multivariable model, we conducted a 
multinomial logistic regression model with the subtype as the dependent 
variable and scaled EUR ancestry as the main predictor. The results from the 
univariate analysis showed that the HR� HER2+ subtype, but not 
HER2 status alone, was associated with lower EUR ancestry (Table 2, left). In 
the HR� HER2+ subtype, a 10% increase in EUR ancestry was significantly 
associated with an 11% decrease in the OR of presenting with this tumor 
subtype. The addition of the selected covariates kept the direction of the OR 
but affected the significance (Table 2). In the model with PAM50-intrinsic 
subtypes as the outcome, we also observed an inverse association between 
HER2E and EUR ancestry. In this case, a 10% increase in EUR ancestry was 
significantly associated with a 14% decrease in the odds of presenting HER2E 
breast cancer. The OR for the basal subtype was also significantly decreased 
(10%) with a 10% increase in EUR ancestry. The inverse association between 
the HER2E subtype and EUR ancestry maintained statistical significance 
with the addition of age, lymph node status, and AFR ancestry as covariates 
(Table 2). The incorporation of the variable country as an additional co-
variate did not significantly affect the OR but it did result in an increase in 
the P value of the model, rendering it statistically nonsignificant. 

We further evaluated the association between the scaled IA ancestry and the 
breast cancer subtypes. This model did not reach significance for the IHC- 
based subtypes but showed a 16% increase in the odds of presenting HER2E 
breast cancer for every 10% additional IA ancestry (P ¼ 0.044, Table 2, 
right). The incorporation of nodal status, age, and AFR ancestry covariables 
to the model rendered higher odds (21%) of presenting HER2E breast cancer 

for every 10% additional IA ancestry (P ¼ 0.021). The inclusion of the 
“country” covariable abrogated statistical significance, although the direction 
and size of the OR was consistent with the association. In addition, in the 
univariate model, we could detect a 17% increase in the odds of presenting 
basal-like breast cancer for every 10% additional IA ancestry, but this as-
sociation lost significance with the inclusion of covariables to the model 
(Table 2, right). 

Genetic ancestry, tumor subtype, and overall survival 
We then evaluated the association between genetic ancestry and survival in 
univariate and adjusted Cox models, including the same covariates as in the 
previous analysis (age, lymph node status, AFR ancestry, and country) and 
adding the PAM50 subtypes (see Supplementary Information for a detailed 
description of the selection of covariables). Neither EUR nor IA ancestry was 
significantly associated with overall survival in univariate analysis (Table 3). 
Adjustment by confounders such as PAM50 subtype, age, AFR ancestry, and 
lymph node status resulted in an apparent increase in the hazard ratio with 
increasing EUR ancestry that was reverted by the addition of country as an 
additional confounder (Table 3). 

Discussion 
There have been a limited number of studies conducted in diverse cohorts of 
Latin American patients with breast cancer that explored the association of 
genetic ancestry and tumor molecular characteristics (7, 8, 21, 22). These 
studies included women from Perú, Mexico, and Colombia. In this work, we 
further tested the association between genetic ancestry and breast cancer 
subtypes, defined both by IHC markers and PAM50, in the MPBCS cohort, 
which includes patients from Argentina, Brazil, Chile, Mexico, and Uruguay. 

TABLE 2 Association between HER2 status, IHC and PAM50 subtypes, and EUR genetic ancestry (for every 10% increase in EUR or IA ancestry 
component) (Cont’d) 

EUR ancestry IA ancestry 

Subtype n OR (CI) P value OR (CI) P value 

Nodal status + age at Dx + AFR ancestry LumA 810 
LumB 0.97 (0.87–1.08) 0.635 1.01 (0.89–1.15) 0.847 
HER2E 0.86 (0.76–0.98) 0.021 1.21 (1.03–1.42) 0.022 
Basal 0.92 (0.81–1.03) 0.145 1.12 (0.97–1.30) 0.126 

Nodal status + age at Dx + AFR ancestry + country LumA 810 
LumB 0.97 (0.85–1.10) 0.672 1.02 (0.85–1.22) 0.857 
HER2E 0.90 (0.78–1.04) 0.151 1.18 (0.95–1.45) 0.124 
Basal 0.96 (0.83–1.10) 0.547 1.07 (0.89–1.30) 0.461 

Ancestry was modeled as a continuous variable and coefficients were scaled to reflect a 10% increase in ancestry. The number of individuals (n) in each analysis 
depends on the completeness of the variables used for adjustment. Bold numbers denote statistically significant differences, and italic numbers denote 
marginally nonsignificant values. 
Abbreviations: CI, confidence interval; Dx, diagnosis; HER�, HER2 nonamplified; HER+, HER2 amplified; HER2E, HER2-enriched; LumA, luminal A; LumB, 
luminal B; OR: odds ratio. 
aFrom the total of 951 genotyped patients, 32 had a HER2-missing status (Table 1), and from those, 16 lacked the nodal status. 
bFrom the total of 951 genotyped patients, 40 had missing status of any of the HR or HER2 markers (Table 1), and from those, 16 lacked the nodal status. 
cFrom the total of 951 genotyped patients, 124 had either missing data or belonged to the normal PAM50 subtype, which was not considered in this study 
(Table 1); from those, 17 also lacked the nodal status. 
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The genetic ancestry distributions of these countries are heterogenous and 
close to those previously described (23–26), with our data showing that EUR 
ancestry is predominantly represented across all study sites in the different 
countries. In Chile and Mexico, the contribution of IA ancestry is higher 
compared with other countries. Additionally, Brazil shows an important 
proportion of AFR ancestry. 

Our findings support previous observations of a higher frequency of HER2- 
dependent tumors in patients with increased IA and decreased EUR ancestry 
(8). In the MPBCS cohort, the association is seen only for HR� tumors, an 
observation already suggested by the Peruvian and Colombian studies (7). 
Moreover, even when the MPBCS cohort included both IHC and gene 
expression–based subtypes, the association seems to be more specific to the 
PAM50 HER2E subtype as the ORs were higher and the statistical signifi-
cance was stronger for this intrinsic subtype than for its IHC counterpart. 
Interestingly, the HER2E subtype includes those tumors in which the 
HER2 pathway is active, regardless of the amplification status of the ERBB2 
gene. It is our hypothesis (to be explored) that the effect of IA ancestry on 
the HER2 pathway may not only be related to the amplification of ERBB2 but 
to the activation of the HER2 pathway by various mechanisms. 

Of note, the significance of the ORs was affected by the addition of the 
“country” variable, likely because of the power limitations when considering 
effects within each country. Sequentially adjusted models maintained the 
magnitude of the ORs and P values, suggesting that there are not strong 
mediators or confounders in the association between ancestry and subtype, 
except for the model including country. 

In univariate Cox proportional hazard regression models, we showed that 
EUR and IA ancestries were not significantly associated with overall survival. 
However, adjustment for PAM50-intrinsic subtypes, age, AFR ancestry, and 

lymph node status rendered the model significant, showing an increase in 
mortality with higher EUR ancestry concomitant with a decrease in mortality 
with higher IA ancestry. The effect of the addition of country as a con-
founding variable in the model also abrogated these effects. Previous reports 
showed contradictory evidence of the effect of ancestry in breast cancer 
survival. On one hand, a lack of association between genetic ancestry and 
overall or cancer-specific survival was shown in a Californian Hispanic/ 
Latina breast cancer cohort with homogeneous access to care (27). On the 
other hand, a more heterogeneous Hispanic/Latina cohort showed a twofold 
increase in mortality in women with more than 50% IA ancestry compared 
with women with 50% or less IA ancestry (28). Evidently, the complex and 
context-specific interplay between biological and nonbiological determinants 
of survival in admixed populations should be clarified with larger, com-
prehensive datasets from admixed cohorts (7). 

This study has some limitations. First, the LACRN-MPBCS cohort is 
hospital-based and may not be representative of Latin American breast 
cancer in terms of clinical and/or pathologic characteristics. In addition, on 
average, participants from Mexico had lower IA ancestry than expected 
based on previous literature. Guadalajara and Sonora, known to have a more 
important Spanish contribution than other regions in Mexico (25, 29), was 
the source of patients in the Mexican LACRN-MPBCS cohort. It is also 
possible that patients recruited from Mexican sites had higher EUR ancestry 
than the general Mexican population. Alternatively, a higher proportion of 
EUR ancestry among LACRN-MPBCS participants could be explained by the 
previously described positive association between EUR genetic ancestry and 
breast cancer risk in Hispanic/Latina and Latin American women (10, 30–32). 
The skewed EUR ancestry proportion for the Mexican site and the limited 
proportion of IA ancestry in Brazil and Uruguay had an impact on the rep-
resentation of the IA ancestry in the cohort, thus limiting the power of the 

TABLE 3 Univariate and multivariate Cox proportional hazard models for overall survival for every 10% increase of EUR or IA ancestry 

n Hazard ratio (CI) P value 

EUR ancestrya 

Univariate 793 1.07 (0.97–1.18) 0.189 
PAM50 subtypes 793 1.11 (1.00–1.23) 0.043 
PAM50 subtypes + nodal status 780 1.14 (1.03–1.27) 0.014 
PAM50 subtypes + nodal status + age at Dx 780 1.14 (1.02–1.27) 0.015 
PAM50 subtypes + nodal status + age at Dx + AFR ancestry 780 1.15 (1.03–1.29) 0.012 
PAM50 subtypes + nodal status + age at Dx +AFR ancestry + 

country 
780 1.05 (0.92–1.21) 0.449 

IA ancestrya 

Univariate 793 0.94 (0.83–1.06) 0.337 
PAM50 subtypes 793 0.90 (0.79–1.02) 0.093 
PAM50 subtypes + nodal status 780 0.86 (0.76–0.98) 0.021 
PAM50 subtypes + nodal status + age at Dx 780 0.86 (0.75–0.98) 0.020 
PAM50 subtypes + nodal status + age at Dx + AFR ancestry 780 0.85 (0.74–0.97) 0.013 
PAM50 subtypes + nodal status + age at Dx + AFR ancestry + 

country 
780 0.94 (0.79–1.11) 0.466 

Abbreviations: CI, confidence interval; Dx, diagnosis. 
aAncestry was modeled as a continuous variable, and coefficients were scaled to reflect a 10% increase in the ancestry proportion. The number of individuals (n) 
in each analysis depends on the completeness of the variables used for adjustment. 
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analysis to evaluate the influence of IA in subtype distribution. Another 
limitation was the number of subjects for whom all data was available, 
which suggests that small but significant effects may have been missed in 
multivariable analyses because of missingness for some of the covariates. 

In summary, the admixed LACRN-MPBCS cohort, with representation of 
Latin American countries that were not present in other studies, supports an 
association between IA ancestry and the HER2E breast cancer subtype. 
These results strengthen the hypotheses of the existence of either population- 
specific genetic variant(s) or of other ancestry-linked or correlated factors 
that affect HER2 expression in breast cancer in a consistent manner across 
different Latin American regions. We have already shown that SNPs specific 
to IA ancestry can affect cancer incidence in a subtype-specific manner 
(33–35). We can speculate that not yet discovered, ancestry-specific ex-
pression quantitative trait locus may be either affecting HER2 expression or 
signaling pathways relevant to HER2 expression (36). Other possible ex-
planations may involve the existence of ancestry-specific splice variants (37) 
or genetic variants in other genes that affect the probability of 
HER2 pathway activation in tumor cells (38–40). On the other hand, non-
genetic factors other than the ones included in our models may be acting as 
confounders on the association between genetic ancestry and the HER2E 
subtype (41, 42). This is especially relevant given that the association seen in 
this study is abrogated by the inclusion of “country” as a confounding variable. 
For example, Hispanic/Latino ancestry has been associated with lower socio-
economic status in the United States (9, 43). Individuals from lower socio-
economic backgrounds tend to seek medical attention at more advanced stages 
of breast cancer, often presenting with more aggressive tumor subtypes (44). 
This evidence may result from disparities in access to health services as a 
consequence of living in remote places and/or from a lack of awareness of 
slower-growing tumors (9, 45). These factors may induce a bias in the pro-
portion of subtypes that reach medical care. We are actively pursuing studies 
that might shed light on the biological explanation for this observation. 
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Antônio Bailão Junior, Adolfo E. Barragan-Curiel, Adelfo Barragan-Ruiz, 
Fernanda Bermudez, Julia Bernachin, Wilfrido Bernal-Herrera, Renata 
Binato, Mara Bonet, Alicia I. Bravo, Sarah Brnich, Claudio Bustamante, 
Miguel Angel Bustamante, Julio Bustos-Gomez, Felipe de J. Bustos-Rodri-
guez, Janett Caballero-Jasso, Angie Calfuman, Natalia Camejo, Antonio 
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